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Abstract 

This study presents an efficient practical method for the 
generation of sequential conditional simulation of a 
Gaussian two-dimensional random field which we 
frequently encounter in GIS spatial analysis problems 
such as DEM’s generation from a limited number of data. 
The many realizations typically correspond to many 
reasons such as the geospatial uncertainty, the 
morphological perturbations over the surface having a 
complex structure or the inadequate representation of the 
triangulated network TIN or grid. These realizations with 
simulation-based concept enable the performance and 
uncertainty assessment that tunes to various geospatial 
(GIS) applications. For DEM generation and 
implementation of the conditional simulation, we need to 
decompose the covariance matrix of the data points and 
grid nodes by Cholesky Decomposition. Conditional 
simulation respect data values and transfers those values 
into the grid nodes. With the Incomplete Cholesky 
decomposition of the covariance matrix, we can produces 
as many simulations as needed in a single step with an 
accuracy, in a global sense, much better than the  Moving 
Window Kriging method. In other words, we don’t need 
to repeat covariance matrix generation and decomposition 
many times. On the other hand, there is the problem of 
producing covariance matrices in the case of large dataset, 
which proved to be time consuming and may take several 
hours on PC. The present paper presents a solution to this 
problem using Sparse Matrices Technique and Cholesky 
decomposition to achieve conditional simulation, 
reducing the time required for computations dramatically, 
as well as decreasing the demand of large amount of 
computer memory.  For the purpose of this study and 
testing all algorithms, a MATLAB Programs was made by 
the author. They have been used in all computation stages 
and applied using real data. The study has shown that we 
can reduce computation time by 85%-95% according to 
the scale of the problem yet saving a considerable space 
in memory needed to store matrices. 

ᘘه شاستخدام تحلᘭل ᘻشولسكي و المصفوفات 
الفارغة لإجراء محاᝏاة مشروطة لحقل عشوائي 

  ثنائي يᙬبع غاوص

  محمد صالح العᘘدالله . مد 

  دمشقجامعة  –الهندسة المدنᘭة ᛿لᘭة 

  ملخص الᘘحث

فعالة من أجل تولᘭد سᚏنارᗫوᒯات  ᘌقدم ᒯذه الᘘحث طᗫᖁقة عملᘭة
محاᝏاة مشروطة متتاᗷعة لحقل ثنائي الأᗷعاد ᗷمتحول عشوائي يᙬبع 

 عند إجراء التحلᘭل المᜓاني فيغاوص وᒯو ما نقاᗷله ᗷصورة متكررة 
. ᛿مثال تولᘭد النموذج الإرتفاعي GISأنظمة المعلومات الجغرافᘭة 

 من عدد محدود من نقاط  DEMالعددي 
᠍
لسطح الأرض إنطلاقا

ᘘاة لعدة أسᝏع من المحاᖔة الرصد. نلجأ لهذا النᘭاب: عدم الموثوق
سطح، للالب ᘭة المورفولوجᘭة المضطᗖᖁة أو المعقدة  الجيومᜓانᘭة،

غير  (grid)أو شᘘكي تᘭᗖᖁعي  TINاستخدام تمثᘭل شᘘكي مثلثاتي 
ᙏستطيع من خلال ᒯذه السᚏنارᗫوᒯات التي تعتمد  دقيق ..الخ. 

مفهوم المحاᝏاة تقدير الأداء و الموثوقᘭة في التمثᘭل الذي يᙬناغم 
لإجراء المحاᝏاة . GISمع العدᘌد من التطبᘭقات الجيومᜓانᘭة في 

نحتاج إلى تحلᘭل  DEMالإرتفاعي العددي  الشرطᘭة للنموذج
مصفوفة التᘘاين ᗷطᗫᖁقة ᘻشولسكي لᝣل من البᘭانات ونقاط الشᘘكة 
الترᘭᗖعᘭة. تحترم المحاᝏاة الشرطᘭة قᘭم البᘭانات وتقوم بتحᗫᖔل ᒯذه 

تحلᘭل ᛒساعدنا . (grid) لشᘘكةلالقᘭم إلى النقاط الجدᘌدة 
ᝏات محاᒯوᗫنارᚏد سᘭشولسكي غيرالتام في تولᘻدة وذᘌلك اة عد

ᗷخطوة واحدة و ᗷدقة تفوق الدقة الناجمة عن كᗫᖁجينغ ᗷالنافذة 
 ةعادة ᘻشكᘭل وتحلᘭل مصفوفالمتحركة. ᒯذا ᘌعني أننا لا نحتاج لإ 

. ᒯنا تبرز مشᜓلة حساب مصفوفة التᘘاين الذي ات عدᘌدةالتᘘاين مر 
) 

ً
 طᗫᖔلا

᠍
) عند التعامل مع بᘭانات عدة ساعاتᘌمكن أن ᘌأخذ وقتا

 لهذه المشᜓلة عن  شᘘكة
ً
. ᘌٌقدم ᒯذا الᘘحث حلا

᠍
ᗷحجم كبير ᙏسᘭᙫا

ولسكي وتحلᘭل ᘻشفارغة الطᗫᖁق استخدام تقنᘭة المصفوفات شᘘه 
 ل زمن الحسابتقلᘭ فيها  ᗷصورة يتملإنجاز المحاᝏاة الشرطᘭة 

ا نقلل من الحاجة إلى حيز كبير من ذاᜧرة ᗷصورة جذرᗫة ᛿ما أنه
ج ᗷلغة مابر  وضعᘭة الجدᘌدة تم الحاسب. ᗷقصد اختᘘار ᒯذه المنهج

قها ᗷعد تطبᘭالحساب  ᛿افة مراحل  أنجزتالᘘاحث ماتلاب من قᘘل 
 أظهرت ᒯذه الدراسة أنه ᘌمكننا إختزال على بᘭانات حقلᘭة فعلᘭة. 

، إضافة من زمن الحساب حسب حجم المشᜓلة %95إلى  %85 من
  إلى التوفير ال᜻بير في حجوم التخᗫᖂن للمصفوفات. 

Key Words: Sparse Matrices, Incomplete Cholesky 
Decomposition, Geostatistical Simulation, Gaussian 
Random Fields, Spatial Data Analysis in GIS, DEM. 
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 Introduction  

Recent advances in geographical information systems and 
global positioning systems enable accurate geocoding of 
locations where scientific data are collected. This has 
encouraged the formation of considerable amount of data 
sets in many fields and has generated considerable interest 
in statistical modeling for location-referenced spatial data 
[Chiles J., Delfiner P. (1999)  Møller (2003), Banerjee et 
al. (2004) and Schabenberger and Gotway (2004)] for a 
variety of methods and applications. Geostatistics is a 
subset of statistical method specialized in analysis, 
interpretation of geographically referenced data 
(Goovaerts, P. 1997). Cressie (1993) considers 
geostatistics to be only one of the three scientific fields 

specialized in the analysis of spatial data. In the most 
pragmatic terms, geostatistics is an analytical tool for 
statistical analysis of sampled field data (Bolstad, 2007). 
Today, geostatistics is not only used to analyze point data, 
but also increasingly in combination with various GIS 
data sources: e.g. to explore spatial variation in remotely 
sensed data, to quantify noise in images and for their 
enhancement and filtering (e.g. filling of the missing 
pixels), to improve Digital Elevation Models (DEM), 
generation or simulation DEM’s, optimize spatial 
sampling (Brus and Heuvelink, 2007), selection of best 
spatial resolution for image data and selection of support 
size for ground data [Atkinson and Quattrochi, et al 
(2000)]. Many application fields use geostatistics for 
spatial data analysis and interpretation like: (1) 
geosciences, (2) water resources, (3) environmental 
sciences, (4) agriculture, forestry (5) soil science, (6) 
mathematics & statistics, (7) ecology, (8) civil and 
petroleum engineering (10) meteorology [Hengl T. (2007)] 
,[Lantuejoul C. (2002) ],[ Mund Jan-Peter (2013)]. 

Full inference and accurate assessment of uncertainty 
often require Markov chain Monte Carlo (MCMC) 
methods [David P. Landau, Kurt Binder (2009), Banerjee 
et al., (2008)]. However, such fitting involves matrix 
decompositions whose complexity increases as ܱ(݊ଷ) (n 
is the number of locations) at every iteration of the MCMC 
algorithm; hence the infeasibility or ‘big n’ problem for 
large data sets. Evidently, the problem is further 
aggravated when we have a vector of random effects at 
each location. Spatial process models for analyzing 
geostatistical data entails computations that become 
prohibitive as the number of spatial locations become 
large. In addition geostatistical modeling usually involves 
many variables and many locations.  

The suggested LU simulation method for generating 
realizations (or DEM simulations), involves producing 
covariance matrices that are too large and not necessarily 
amenable to direct decomposition, inversion or 
manipulation. This paper presents an efficient 
Implementation method that uses LU decomposition or 
Cholesky Method for symmetric matrices, as well as 
Sparse Matrix Techniques for generating conditional 
realizations using randomized methods. Sparse Matrix 
Technique can overcome the problem of covariance 
matrices of huge sizes. This technique reduces the time 
required for large-scale systems computations including 
the Eigenvalue problem as well as the demand of large 
amount of memory. The LU method has some other 
advantages over other methods, such as the Turning Bands 
(TB) or FFT, in that the simulation and conditioning are 
implemented simultaneously [Gneiting Tilmann et al. 
(2005)]. In addition LU algorithm is considered much 
more simple, fast and easy to implement [Dietrich, C. R. 
(1993)]. LU decomposition Method due to its author 
Davis (1986), assumes that all grid nodes will be 
simulated at the same time and that all available data will 
be used. Using Sparse Matrix Techniques with an 
approximate incomplete decomposition method in the 
simulation of larger grid schemes, or large covariance 
matrices, is the only way out to overcome the 
computational machine errors [Dietrich, C. R. and Newsam, 

G. N. (1997).]. In general, the covariance matrix of order 
1000 or more is considered as sparse [Cressie, N. and 

Huang, H.-C. (1999)] The purpose of this paper is to 
implement Conditional Simulation by LU decomposition 
(or Cholesky decomposition method ) in combination with 
Sparse Matrices Technique to generates realization of N 
random variables at n spatial locations usually from a grid 
structure, using Monte Carlo Method (MCMC) and 
preserving the data values at original locations within the 
predefined spatial structure. On the other hand, Sequential 
Simulation algorithms are considered the most frequently 
used techniques, having several advantages over other 
methods, including the automatic handling of anisotropy 
as well as data conditioning. Their theoretical basis is 
simple and it can be applied to many simulations problems 
with single variable as well as with multiple variables, 
either continuous or categorical.  
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Conditional Simulation Concept 

The building blocks of a conditional simulation are the 
mean function ߤ(∙), the covariance function C(∙) and the 
most important data vector ݖௗ . It is required that the 
conditionally simulated process ܼ௦௖(ݔ) pass through the 
data ݖௗ, having unconditional mean ߤ(∙) and variance C(∙
) . One might think that the kriging predicator ܼ௔௞(ݔ) 
would satisfy the requirements, because it does interpolate 
the data exactly and it is unbiased. However as kriging has 
a smoothing tendency, it does not possess enough 
variability in order to give a posterior probability 
distribution about the uncertainty [Myers, J .C., (1997)].  

The purpose of Conditional Simulation is to produce 
Random Fields that simulate the spatial variability of the 
underlying random process ܼ(ݔ) [Malinowski A, Schlather 

M, Menck PJ (2015)],[Cressie, N.; Wikle, C.K. (2011)], [Isaak, 

E.H. & Srivastava RM. (1989)].   

Theoretically, with Conditional Simulation we are able to 
generate an infinite number of possible realizations of a 
Random Field { ܼ௦(ݔ), ,ܦ ߳ ݔ ݏ = 1 → ∞ }. From among 
the infinite simulations we choose those that meet certain 
condition  ܼ௦(ݔ௔) =  ܼ଴(ݔ௔), ௔ݔ∀ ∈ ܦ .   For example if 
we want to simulated a model that honors data values at 
the actual data locations, we set: 

 ܼ௖௦(ݔ௔) =  ܼ଴(ݔ௔), ௔ݔ∀ ∈ ܦ , Where ௔ݔ  represents data 
locations. 

This is known as Conditional Simulation, which has the 
same variability characteristics as the real observed 
phenomenon. This means that the simulated values 
 ܼ௖௦(ݔ௔)  have the same first two experimentally found 
moments (namely the mean and the variance or 
Variogram) as the real values ܼ଴(ݔ௔). On the other hand, 
if not then the simulated values  ܼ௖௦(ݔ௔) are not the best 
possible estimators of the random process ܼ(ݔ). Journel 
and Huijbregts (1978) showed that the posterior 
estimation variance of Conditional Simulation is as twice 
as that of Kriging, thus one should emphasize that the 
objective of simulation is not to obtain the best unbiased 
estimator provided by Kriging.  Conditional Simulation is 
useful to get some idea of the amount of variability 
remaining in the physical model or process  (ݔ)ܼ
conditioning with respect to the observations [Journel, A.G 

(1989)]. Thus predictions and simulations address two 
different problems.  

Now consider the decomposition of the process into a 
kriging predicator and unconditional residual [Journel, 

A.G. & Huijbregts, C. (1978) ]. 

ܼ௖௦(ݔ) = (ݔ)∗ܼ + ሾܼ௨௦(ݔ) − ܼ௨௦
∗  ሿ    (1)(ݔ)

Where ܼ௖௦(ݔ) is the conditional simulation, ܼ∗(ݔ) is the 
kriging estimators using the real data set (representing the 
estimated grid), ܼ௨௦(ݔ)  is the unconditional simulation, 
and ܼ௦௞(ݔ)   is simple-kriging estimators using the 
unconditional simulated data. The two components of the 
right-hand side of ܼ∗(ݔ)  and ܼ௨௦(ݔ) − ܼ௨௦

∗ (ݔ)   are 
orthogonal. This orthogonality implies that ܼ௖௦(ݔ) has the 
same unconditional covariance as (ݔ) , namelyܥ(∙). The 
quantity ܼ௨௦(ݔ) − ܼ௨௦

∗  can be obtained by kriging the (ݔ)
difference between data values and the unconditionally 
simulated ones at data locations. Thus the above 
expression can rewritten as follows [Davis (1987) and 
Cressie (1993)] 

)()'()()(
1

usduscs zzxcxZxZ  
  (2) 

Where ܼ௖௦(ݔ)  and ܼ௨௦(ݔ)  has the same meaning given 
above, 

ᇱ(ݔ)ܿ ≡ ௗݔ൫ܥ , ,௚൯ݔ ௗݔ∀ ∈ ,ܦ ௚ݔ∀ ∈  is the covariance :  ܩ

vector between data nodes and grid nodes. 

 )(zVar : is the variance-covariance matrix 

between the data and itself.  ݖௗ ௚ݖ ݀݊ܽ   are two vectors 

representing actual data and the simulated ones at the data 
node locations. 

 

Conditional Sequential Simulation 

The principle of Conditional Sequential Simulation is 
once the new value simulated, it is added to the original 
set of conditioning data, and the procedure repeated 
[Gomez-Hernandez, J.J , Cassiraga E.F. (1994)]. Finally all 
simulated nodes (by construction) will have the same 
initial spatial structure provided that all node values at 
data locations preserved. The principle of Sequential 
Simulations can be described as follows [Christakos, G. 

(2005)]: Consider the cpdf = ),...,,( 021 zzzzf n , where 

0z   denotes the conditioning data at 0n  locations. This 

probability function can be defined as 

)3()]...,[(

)...()(),...,(

011

0120101

zzzzf

zzzfzzfzzzf

nn

n







 

Thus the generation of a realization by Sequential 
Simulation takes the following steps [Christakos, G. (2005)]:  



4 
 

(1)   Draw a value 1z  from the conditional probability 

distribution 1f  given the set 0z as conditioning data. 

(2) Draw a value 2z  from the conditional probability 

distribution 2f  given 10 zz   as conditioning data. … 

…  

(n) Draw the last value nz  from the conditional 

probability distribution nf  given the set

 110 ,...,  nzzz as conditioning data. 

Remark 2: the Sequential Simulation is conditional by 
construction, thus eliminating the extensive conditioning 
steps required by other traditional methods such as the 
Turning Bands Method. 

Remark 3: There is no restriction on the spatial locations 
of the random variables yielding an algorithm that can be 
equally applied to generate one or more variables on either 
a regular or irregular grid. 

However, it remains the problem of determining the 
cumulative portability distribution function (cpdf) of any 
single random variable given any set of conditioning data. 
This problem has been solved for the Gaussian 
distribution, where the data first are transformed to the 
standard Gaussian values. Simple or Ordinary kriging is 
used to obtain estimates of the necessary conditional 
distribution defined by the only the two Gaussian 
parameters; namely its mean and variance. The 
simulations are then drawn randomly from this 
distribution using inverse transform method. Finally, the 

results of the Gaussian simulation are transformed 
back into the original data space. 

The Gaussian Function 

Gaussian Function is unique in geostatistics for its 
analytical simplicity and for being the limit distribution of 
many analytical theorems globally known as ‘Central 
Limit Theorem’. If the continuous phenomenon 

}),({ DxxZ    is generated by the sum of a number of 

independent sources },...,1,),({ KkDxxyk  with 

similar spatial distributions then the phenomenon can be 
modeled by a Multi-Gaussian RF model. Multi-Gaussian 
models are extremely congenial, well understood, and 
they have large record of successful applications [John 

Dolloff and Peter Doucette (2014)]. A random function is said 
to be Gaussian or Multi-Gaussian if any linear 

combination of its variables follows the Gaussian 
distribution [Vanhatalo, J. and Vehtari, A. (2008)], 





K

k
kk functiongaussianxYxZ

1

)4()()(   

In geostatistics, conditional simulation is used to estimate, 
by Monte Carlo Methods, complicated nonlinear 
functions that depend explicitly on multivariate stochastic 
distributions [Ripley B. (2008)]. When the simulation 
domain is discrete, a sequential procedure can be 
considered [Journel, A.G (1989)]. This consists of 
prescribing an arbitrary ordering of all of the points of the 
domain, and simulating each point in turn according to a 
Conditional Gaussian distribution given the generated 
values of all the previous points. In the case where the 
simulation domain is continuous, a ‘parallel’ procedure is 
necessary such as the Turning Bands Method, or LU 
Decomposition (Cholesky) Method.  

LU Decomposition (or Cholesky Method) 

The suggested method considers one covariance matrix 

C  of all data and grid locations to be generated and 

partitioned as follows: 

)5(
2221

1211











CC

CC
C  

Where 11C is the variance-covariance matrix between 

data points. tCC 2112   is the covariance matrix between 

data points and grid points and 22C  is the variance 

covariance matrix of grid points. If matrices 11C  and 

22C  are symmetric and positive-definite then matrix C
is also symmetric and positive definite and can be 
decomposed by Cholesky algorithm into lower part and 
upper part as follows, 

)6(
0

0

22

1211

2221

11



















U

UU

LL

L
ULC  

Let the vector  tWWW 21  be a vector of 

independent Gaussian Random numbers )1,0(N , where 

the length of 1W  is equal to the number of data points and 

2W  is equal to the number of grid nodes.  
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Also, let the vector  tus zzz 21  be an unconditional 

simulation of the random function DxxZ ),(  at 

data points and grid nodes with the covariance matrix C  .  

Now if we set WLy  , we will find that  

)7(

)()()'(

CLUUIL

UWWELULWWEyyE tt




 

IWWE t )( is the identity matrix , because W  is a 

vector of independent random numbers )1,0(N  . From 

(7) we see that the vector WLy   is an unconditional 

simulation of the random function )(xZ  that leads to the 

conclusion   yzzz t
us  21 . Now we can write  

)8(
222121

111

2

1























WLWL

WL

z

z
yzus  

As we seek a conditional simulation of grid nodes, we 

can set datazz 1 , where dataz is the vector of actual 

data values and set nodeszz 2 , where gnodes zz   is the 

vector of conditional simulation (at nodes) which 

correspond to the random vector 2W only. On the other 

hand the vector 1W is no more a random vector and 

should be replaced by the solution of the upper part of 
the system (8)  

)9(1
111

1
111 datazLzLW  

 

Now replacing 1W in the system (8) yields the sought 

conditional simulation, 

)10(222
1

1121 WLzLLz datanodes  
 

Remark 1: if a grid node happens to coincide (or co-
located) with any data point, then the point should be 
considered as data and must be unique (no duplication of 
data is accepted at any location). 

Remark 2: the data vector datazz 1 in expression (9) 

have to be transposed (or normalized) so that the random 

function )(xZd is Gaussian Random Function

).1,0()( NxZd   

Remark 3: all covariance matrices 11C , 12C and 22C
should use the same covariance function so that 

Variogram parameters are normalized i.e. 10  bc . 

Note that  

)11()(

,)(,)(

2112

2211

tt
gd

t
gg

t
dd

CCzzE

CzzECzzE




 

Remark 4: multiple simulations may be generated easily 

and as many as desired (because the vector 2W  is a 

random vector),   thus the matrix 222 WL   can be 

computed in a single step. The number of this matrix rows 
will be equal to the number of simulated nodes and 
number of columns will be equal to the number of 

simulations. Again we do not need to generate 1W  

because it already replaced by dzL 1
11  

Cholesky Decomposition with Sparse Matrix 
Technique (the algorithm) 

One can write Cholesky decomposition in the partition 
form (6) in different way. If we put 

)12(

0

0

222212211121

12111111

2221

1211

22

1211

2221

11

2221

1211














































ULULUL

ULUL

CC

CC

U

UU

LL

L

CC

CC

 
Then: 

 Compute all covariance matrices { 11C , 12C , 22C } 

and store in sparse format. 

 Compute the Cholesky decomposition of the square 

matrix 11C   and obtain the sparse lower triangular 

matrix 11L  as )13(1111111111
tLLULC  . 

 Find the inverse of 11L  and store it in 
1

11
L  . Note that 

we don’t need to store 11U  or  

 

 Compute 21L  using the formula: 

1
11
U
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  )14(1
111221

tt LCL   

Recalling from (12) :

   ttttt LCLCUCL

ULC

1
1112

1

1112
1

111221

112121

 



 
 

 Compute 22L : to find 22L we must find 

)( 2222 UL  first. from (12) we have: 

)15(221221222222 LUULCUL   

Then perform Incomplete Cholesky Decomposition 

of 22LU , which is also a sparse matrix and thus the 

output will be a sparse triangular matrix 22L . 

 
Figures (2) through (9) show the sparse structure of the 
matrices used by the LU decomposition method. We can 
easily recognize the sparsity of each matrix visually. The 
sparsity of each matrix is computed by dividing the 
number of non-zero, which is fixed below each figure 
(nz~), by the total number of elements of the matrix.  
Figure (4) through (9) below show the sparse structure of 
the matrices for larger problem, where the range of 
influence (the Variogram reaches the sill) having the 
value equal to the third of the maximum distance in the 
grid system. The figures show that the sparsity becomes 
much clear. The non-zero elements related to the total 
number of elements especially for the initial matrices are 
less than 5%. Although each element needs 8 MB for 
storage, there is much saving in the processing time as 
well as in storage capacity required for completing the 
simulation than that with known traditional method. 

 

Implementation the Algorithm 
 

 Dataset that has been used for testing programs 
performance (which cover geographic area of 
1000݉ ×1000m) is given in the form of 3-column 
matrix (x, y, z) . It is a terrain elevation data consist 
of 266 points distributed as shown in (Fig.1). 
 

 Data in the study has been downloaded from internet 
which was related to a small forested area in 
Wisconsin, USA, provided by Department of Forest 
Resources, University of Minnesota. 

 
The Conditional simulation by Incomplete Cholesky 
decomposition using sparse matrix technique has 
been implemented using the special Matlab Program. 

 
Fig.1 Dataset Locations and their distribution 

The data is an ascii file, where Matlab reads it in two 
ways: either by giving the name of the ‘file’ or matrix 
which must consist of three columns: the first two 
columns contain the geographic x,y coordinates and the 
third contains the corresponding z values. The other way 
of entering data into the program is to give the names of 3 
vectors, representing the geographic coordinates and data 
values, separately. The program computes the mean value 
and the variance in order to convert the data into a 
standard Gaussian (Davis 1987b). The second step is to 
define the grid system that has to be simulated. The 
parameters for the simulated nodes are entered in two way 
either interactively or written directly in the program. 
Variogram parameters, Anisotropy, nugget effect, number 
of simulations as well as seed number all can be entered 
in the same ways mentioned above. The program structure 
is similar to the program ‘lusim’ provided by the GSLIB 
[Deutsch C.V. & Journel AG. (1992) ], although here the 
study uses sparse matrix technique with the Incomplete 
Cholesky Decomposition. All those functions are Matlab 
built-in functions, thus they do computational tasks, much 
faster than other functions that have no similar Matlab 
functions. Those functions use the traditional GSLIB 
methodology and their execution is very slow, therefor 
they slow the performance of the program. For example, 
the construction of covariance matrices uses the 
traditional method and takes more than 90% of the overall 
execution time. 24 Simulations were generated and some 
results of the Cholesky decomposition Process are shown 
in figures No 2 through figure No 9 for small scale 
problems as well as for large scale Problems. Final 16 
Simulation results represented by Contour images are 
shown in figures No.10 through figure. No.25.  
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Conclusions 
 
In this paper, sparse matrices technique with Cholesky 
decomposition has been tested and proved as an efficient 
method for decomposing large covariance matrix by 
Cholesky method and generating simulation realizations. 
This method is based on the randomized sampling of 
covariance matrix for finding a sparse matrix which has 
much smaller size than the original one and captures most 
of the action of that matrix.  This method works very well 
for approximation of DEM’s which generates as many 
simulations as needed very fast.  
When the field correlation is defined using Gaussian 
Covariance Function and taking into account the sparsity 
of the system and this means that only pair of nodes that 
fall within the zone of influence (the range) have a 
significant correlation, the rest of pairs, usually located 
beyond the search radius, having negligible correlations 
and introducing many zero elements in the covariance 
matrix. This study shows that, using this method, very 
large covariance matrices can be decomposed, but only 
limitation of this method is related to storing a large sparse 

matrices in computer memory like matrices 11L and 22L . 

The study provided computationally efficient methods for 
fitting DEM model to a relatively small data set by 
generating spatial simulations conditioning on the data 
itself. Once the new value simulated, it is added to the 
original set of conditioning data, and the procedure 
repeated. Once enough simulations are computed, a ‘best’ 
DEM model is then fit very quickly. The conditional 
simulation results give the most likely values or expected 
values at unobserved locations. As we see from the figures 
below that the simulated data reflect some of the 
uncertainties that are expected from any kind of 
simulation whether it is conditional or unconditional.  
 

 
Figure 4  Sparse Covariance Matrix C11 

 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 
 
 

 
Figure 2 Computational Steps of the of the Variance 
Covariance Matrix (small scale dataset) 
 
 

 

 

Figure 3  Computation Steps - Incomplete   Cholesky 
Decomposition with Sparse Matrices (Small Scale Problem) 

 

 
Figures (4) through (9) show: Computational Steps– 
Variance-Covariance Matrix and Incomplete Cholesky 
Decomposition with Sparse Matrices (for Large Scale 
Problem) 
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Figure 5  Sparse Covariance Matrix C22 

 

 
Figure 6  Sparse Lower Triangular Matrix L11 

 

 
Figure 7  The Inverse Triangular Matrix of L11 

 

 
Figure 8 Square Sparse Matrix LU22=C22-L21*U12 

 

 
Figure 9 Rectangular Sparse Matrix L22 

 
 

Some Simulations and Contours representation 
 
Below12 figures represent 12 Simulation  (Fig. No.10 
through Fig.No.21) . Notice that each simulation is different 
from the others. In fact we can do unlimited number of 
simulations and each of them will be unique. 
 
 

 
Fig.10  Simulation1 
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Fig.11 Simulation2 

 

 
Fig.12  Simulation 3 

 
Fig.13  Simulation4 

 

 
Fig.14  Simulation 5 

 

 
  Fig.15Simulation 6 

 

 
Fig.16  Simulation 7 
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Fig.17  Simulation 8 

 

 
Fig.18  Simulation 9 

 

Fig.19   Simulation 11 
 

Fig.20  Simulation 12 

Fig.21   Simulation 14 
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