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Abstract

This study presents an efficient practical method for the
generation of sequential conditional simulation of a
Gaussian two-dimensional random field which we
frequently encounter in GIS spatial analysis problems
such as DEM’s generation from a limited number of data.
The many realizations typically correspond to many
reasons such as the geospatial uncertainty, the
morphological perturbations over the surface having a
complex structure or the inadequate representation of the
triangulated network TIN or grid. These realizations with
simulation-based concept enable the performance and
uncertainty assessment that tunes to various geospatial
(GIS) applications. For DEM generation and
implementation of the conditional simulation, we need to
decompose the covariance matrix of the data points and
grid nodes by Cholesky Decomposition. Conditional
simulation respect data values and transfers those values
into the grid nodes. With the Incomplete Cholesky
decomposition of the covariance matrix, we can produces
as many simulations as needed in a single step with an
accuracy, in a global sense, much better than the Moving
Window Kriging method. In other words, we don’t need
to repeat covariance matrix generation and decomposition
many times. On the other hand, there is the problem of
producing covariance matrices in the case of large dataset,
which proved to be time consuming and may take several
hours on PC. The present paper presents a solution to this
problem using Sparse Matrices Technique and Cholesky
decomposition to achieve conditional simulation,
reducing the time required for computations dramatically,
as well as decreasing the demand of large amount of
computer memory. For the purpose of this study and
testing all algorithms, a MATLAB Programs was made by
the author. They have been used in all computation stages
and applied using real data. The study has shown that we
can reduce computation time by 85%-95% according to
the scale of the problem yet saving a considerable space
in memory needed to store matrices.
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Introduction

Recent advances in geographical information systems and
global positioning systems enable accurate geocoding of
locations where scientific data are collected. This has
encouraged the formation of considerable amount of data
sets in many fields and has generated considerable interest
in statistical modeling for location-referenced spatial data
[Chiles J., Delfiner P. (1999) Maoller (2003), Banerjee et
al. (2004) and Schabenberger and Gotway (2004)] for a
variety of methods and applications. Geostatistics is a
subset of statistical method specialized in analysis,
interpretation of geographically referenced data
(Goovaerts, P. 1997). Cressie (1993) considers
geostatistics to be only one of the three scientific fields
specialized in the analysis of spatial data. In the most
pragmatic terms, geostatistics is an analytical tool for
statistical analysis of sampled field data (Bolstad, 2007).
Today, geostatistics is not only used to analyze point data,
but also increasingly in combination with various GIS
data sources: e.g. to explore spatial variation in remotely
sensed data, to quantify noise in images and for their
enhancement and filtering (e.g. filling of the missing
pixels), to improve Digital Elevation Models (DEM),
generation or simulation DEM’s, optimize spatial
sampling (Brus and Heuvelink, 2007), selection of best
spatial resolution for image data and selection of support
size for ground data [Atkinson and Quattrochi, et al
(2000)]. Many application fields use geostatistics for
spatial data analysis and interpretation like: (1)
geosciences, (2) water resources, (3) environmental
sciences, (4) agriculture, forestry (5) soil science, (6)
mathematics & statistics, (7) ecology, (8) civil and
petroleum engineering (10) meteorology [Hengl T. (2007)]
,[Lantuejoul C. (2002) ],[ Mund Jan-Peter (2013)].

Full inference and accurate assessment of uncertainty
often require Markov chain Monte Carlo (MCMC)
methods [David P. Landau, Kurt Binder (2009), Banerjee
et al.,, (2008)]. However, such fitting involves matrix
decompositions whose complexity increases as 0(n?) (n
is the number of locations) at every iteration of the MCMC
algorithm; hence the infeasibility or ‘big n’ problem for
large data sets. Evidently, the problem is further
aggravated when we have a vector of random effects at
each location. Spatial process models for analyzing
geostatistical data entails computations that become
prohibitive as the number of spatial locations become
large. In addition geostatistical modeling usually involves
many variables and many locations.

The suggested LU simulation method for generating
realizations (or DEM simulations), involves producing
covariance matrices that are too large and not necessarily
amenable to direct decomposition, inversion or
manipulation. This paper presents an efficient
Implementation method that uses LU decomposition or
Cholesky Method for symmetric matrices, as well as
Sparse Matrix Techniques for generating conditional
realizations using randomized methods. Sparse Matrix
Technique can overcome the problem of covariance
matrices of huge sizes. This technique reduces the time
required for large-scale systems computations including
the Eigenvalue problem as well as the demand of large
amount of memory. The LU method has some other
advantages over other methods, such as the Turning Bands
(TB) or FFT, in that the simulation and conditioning are
implemented simultaneously [Gneiting Tilmann et al.
(2005)]. In addition LU algorithm is considered much
more simple, fast and easy to implement [Dietrich, C. R.
(1993)]. LU decomposition Method due to its author
Davis (1986), assumes that all grid nodes will be
simulated at the same time and that all available data will
be used. Using Sparse Matrix Techniques with an
approximate incomplete decomposition method in the
simulation of larger grid schemes, or large covariance
matrices, is the only way out to overcome the
computational machine errors [Dietrich, C. R. and Newsam,
G. N. (1997).]. In general, the covariance matrix of order
1000 or more is considered as sparse [Cressie, N. and
Huang, H.-C. (1999)] The purpose of this paper is to
implement Conditional Simulation by LU decomposition
(or Cholesky decomposition method ) in combination with
Sparse Matrices Technique to generates realization of N
random variables at n spatial locations usually from a grid
structure, using Monte Carlo Method (MCMC) and
preserving the data values at original locations within the
predefined spatial structure. On the other hand, Sequential
Simulation algorithms are considered the most frequently
used techniques, having several advantages over other
methods, including the automatic handling of anisotropy
as well as data conditioning. Their theoretical basis is
simple and it can be applied to many simulations problems
with single variable as well as with multiple variables,
either continuous or categorical.



Conditional Simulation Concept

The building blocks of a conditional simulation are the
mean function u(-), the covariance function C(-) and the
most important data vector z;. It is required that the
conditionally simulated process Zs.(x) pass through the
data z4, having unconditional mean u(-) and variance C(-
). One might think that the kriging predicator Z, (x)
would satisfy the requirements, because it does interpolate
the data exactly and it is unbiased. However as kriging has
a smoothing tendency, it does not possess enough
variability in order to give a posterior probability
distribution about the uncertainty [Myers, J .C., (1997)].

The purpose of Conditional Simulation is to produce
Random Fields that simulate the spatial variability of the
underlying random process Z(x) [Malinowski A, Schlather
M, Menck PJ (2015)],[Cressie, N.; Wikle, C.K. (2011)], [Isaak,
E.H. & Srivastava RM. (1989)].

Theoretically, with Conditional Simulation we are able to
generate an infinite number of possible realizations of a
Random Field { Z;(x),x € D,s = 1 - oo }. From among
the infinite simulations we choose those that meet certain
condition Z;(x,) = Zy(x,),Vx, € D. For example if
we want to simulated a model that honors data values at
the actual data locations, we set:

Zos(xg) = Zy(xy),Vx, € D, Wherex, represents data
locations.

This is known as Conditional Simulation, which has the
same variability characteristics as the real observed
phenomenon. This means that the simulated values
Zs(x,) have the same first two experimentally found
moments (namely the mean and the variance or
Variogram) as the real values Z,(x,). On the other hand,
if not then the simulated values Z.,(x,) are not the best
possible estimators of the random process Z(x). Journel
and Huijbregts (1978) showed that the posterior
estimation variance of Conditional Simulation is as twice
as that of Kriging, thus one should emphasize that the
objective of simulation is not to obtain the best unbiased
estimator provided by Kriging. Conditional Simulation is
useful to get some idea of the amount of variability
remaining in the physical model or process Z(x)
conditioning with respect to the observations [Journel, A.G
(1989)]. Thus predictions and simulations address two
different problems.

Now consider the decomposition of the process into a
kriging predicator and unconditional residual [Journel,
A.G. & Huijbregts, C. (1978) ].

Zes(x) = Z7(x) + [Zys(x) — Z3s(x)] (D)

Where Z.;(x) is the conditional simulation, Z*(x) is the
kriging estimators using the real data set (representing the
estimated grid), Z,;(x) is the unconditional simulation,
and Zg(x) is simple-kriging estimators using the
unconditional simulated data. The two components of the
right-hand side of Z*(x) and Z,.(x) — Z;,(x) are
orthogonal. This orthogonality implies that Z.;(x) has the
same unconditional covariance as (x) , namelyC(-). The
quantity Z,,;(x) — Z;;(x) can be obtained by kriging the
difference between data values and the unconditionally
simulated ones at data locations. Thus the above
expression can rewritten as follows [Davis (1987) and
Cressie (1993)]

Z,(x)=Z, (x)+ (1) (2, ~2,) @

Where Z.;(x) and Z,;(x) has the same meaning given
above,

c(x) = C(xd,xg), Vxq € D,Vx4 € G : is the covariance
vector between data nodes and grid nodes.

ZE Var(z) : is the variance-covariance matrix

between the data and itself. z, and z; are two vectors

representing actual data and the simulated ones at the data
node locations.

Conditional Sequential Simulation

The principle of Conditional Sequential Simulation is
once the new value simulated, it is added to the original
set of conditioning data, and the procedure repeated
[Gomez-Hernandez, J.J , Cassiraga E.F. (1994)]. Finally all
simulated nodes (by construction) will have the same
initial spatial structure provided that all node values at
data locations preserved. The principle of Sequential
Simulations can be described as follows [Christakos, G.

(2005)]: Consider the cpdf = f(z,,2,,...,2,

Z,) , where

Z, denotes the conditioning data at#7,, locations. This

probability function can be defined as

[ 2z, |20) = f(21]20) - [(24]2, 0 2))...
S22, 10 2)) 3)

Thus the generation of a realization by Sequential
Simulation takes the following steps [ Christakos, G. (2005)]:




1) Draw a value Z, from the conditional probabilit
1 p y

distribution f, given the set z, as conditioning data.

(2) Draw a value z, from the conditional probability

distribution f, given z, U z, as conditioning data. ...

(n) Draw the last value z, from the conditional
probability distribution f, . given the set

z, Y [Z1 yeersZ ]as conditioning data.

n—1

Remark 2: the Sequential Simulation is conditional by
construction, thus eliminating the extensive conditioning
steps required by other traditional methods such as the
Turning Bands Method.

Remark 3: There is no restriction on the spatial locations
of the random variables yielding an algorithm that can be
equally applied to generate one or more variables on either
a regular or irregular grid.

However, it remains the problem of determining the
cumulative portability distribution function (cpdf) of any
single random variable given any set of conditioning data.
This problem has been solved for the Gaussian
distribution, where the data first are transformed to the
standard Gaussian values. Simple or Ordinary kriging is
used to obtain estimates of the necessary conditional
distribution defined by the only the two Gaussian
parameters; namely its mean and variance. The
simulations are then drawn randomly from this
distribution using inverse transform method. Finally, the
results of the Gaussian simulation are transformed

back into the original data space.

The Gaussian Function

Gaussian Function is unique in geostatistics for its
analytical simplicity and for being the limit distribution of
many analytical theorems globally known as ‘Central
Limit Theorem’. 1If the continuous phenomenon

{Z(x),x € D} is generated by the sum of a number of

independent sources {y, (x),x € D,k =1,...,K} with

similar spatial distributions then the phenomenon can be
modeled by a Multi-Gaussian RF model. Multi-Gaussian
models are extremely congenial, well understood, and
they have large record of successful applications [John
Dolloff and Peter Doucette (2014)]. A random function is said
to be Gaussian or Multi-Gaussian if any linear

combination of its variables follows the Gaussian
distribution [Vanhatalo, J. and Vehtari, A. (2008)],

K
Z(x)=Y_AY,(x) ~ gaussian— function (4)

k=1

In geostatistics, conditional simulation is used to estimate,
by Monte Carlo Methods, complicated nonlinear
functions that depend explicitly on multivariate stochastic
distributions [Ripley B. (2008)]. When the simulation
domain is discrete, a sequential procedure can be
considered [Journel, A.G (1989)]. This consists of
prescribing an arbitrary ordering of all of the points of the
domain, and simulating each point in turn according to a
Conditional Gaussian distribution given the generated
values of all the previous points. In the case where the
simulation domain is continuous, a ‘parallel’ procedure is
necessary such as the Turning Bands Method, or LU
Decomposition (Cholesky) Method.

LU Decomposition (or Cholesky Method)

The suggested method considers one covariance matrix
C of all data and grid locations to be generated and
partitioned as follows:

¢, C
11 12
C= (5)
G, Gy
Where C11 is the variance-covariance matrix between
data points. C;, = C5, is the covariance matrix between
data points and grid points and sz is the variance

covariance matrix of grid points. If matrices C11 and

C22 are symmetric and positive-definite then matrix C

is also symmetric and positive definite and can be
decomposed by Cholesky algorithm into lower part and
upper part as follows,

Lll 0 X Ull U12
L21 L22 0 U22

C=L-U= (6)

Let the vector W = [W1 w, ]t be a vector of
independent Gaussian Random numbers N (0,1), where
the length of W1 is equal to the number of data points and

W, is equal to the number of grid nodes.



Also, let the vector z, = [Z1 z, ]t be an unconditional

simulation of the random function Z(x),Vx e D at

data points and grid nodes with the covariance matrix C .

Now if we set y = L-W , we will find that

E(y-y)=EWLWW'U)=L-E(WW")-U =
L-I1-U=LU=C (7)

E(WW") =1 is the identity matrix , because W is a
vector of independent random numbers N (0,1) . From
(7) we see that the vector y = LW is an unconditional

simulation of the random function Z(x) that leads to the

. t .
conclusion z,, = [Z1 Zz] = ) . Now we can write

z. =y Z _ L, -w 8)
” Z, Ly W+ Ly -W,

As we seek a conditional simulation of grid nodes, we

cansetz, =z, ,where z, is the vector of actual

Z_ is the

where z, .. = <

data values and setz, =z, ...,

vector of conditional simulation (at nodes) which

correspond to the random vector W, only. On the other

hand the vector W, is no more a random vector and

should be replaced by the solution of the upper part of
the system (8)

VVI = Ll_ll ’ Zl = LIll ' Zdata (9)

Now replacing VVl in the system (8) yields the sought

conditional simulation,

Z =L, Ll_ll Zgaa T Loy W, (10)

nodes

Remark I: if a grid node happens to coincide (or co-
located) with any data point, then the point should be
considered as data and must be unique (no duplication of
data is accepted at any location).

Remark 2: the data vector z, =z, in expression (9)

have to be transposed (or normalized) so that the random

function Z,(x)is Gaussian Random Function

Z,(x) € N(0,)).

Remark 3: all covariance matrices C,,, C,and C,,
should use the same covariance function so that
Variogram parameters are normalized ie. ¢, +b=1.

Note that
E(z;zy)=C,,E(z,2,)=Cy,
E(ZdZ;):Clz :Cztl an

Remark 4: multiple simulations may be generated easily

and as many as desired (because the vector W, is a

random vector),  thus the matrix L,, W, can be

computed in a single step. The number of this matrix rows
will be equal to the number of simulated nodes and
number of columns will be equal to the number of

simulations. Again we do not need to generate W,

because it already replaced by Ll_l1 "z,

Cholesky Decomposition with Sparse Matrix
Technique (the algorithm)

One can write Cholesky decomposition in the partition
form (6) in different way. If we put

|:C11 Cl2j|:|:L11 0 :|.|:U11 U12j|_)
C21 C22 L21 L22 0 U22

|:C11 C12:| - |:L11U11 L11U12 :| (12)
C121 C22 L21U11 L21U12 + L22U22

Then:

e Compute all covariance matrices { C,,,C,,, C,, }

and store in sparse format.
e Compute the Cholesky decomposition of the square

matrix C;, and obtain the sparse lower triangular
matrix L, as C;, =L,U,, =L,,L;, (13).
e Find the inverse of L, and store it in Lﬁ . Note that

-1
we don’t need to store U,, or U},

e Compute L,, using the formula:



1Y
L, = Cltz - (Lli) (14)
Recalling from (12) :
Cy =L, Uy, =

Ly, = Cltz 'Uﬂl = Cltz '(Ltn)_l = Cltz (th )t

e Compute L,,: to find L,, we must find
(L,, -U,,) first. from (12) we have:
Ly, Uy=Cy—-L,-U,=LU, (15)
Then perform Incomplete Cholesky Decomposition

of LU,,, which is also a sparse matrix and thus the

output will be a sparse triangular matrix L,, .

Figures (2) through (9) show the sparse structure of the
matrices used by the LU decomposition method. We can
easily recognize the sparsity of each matrix visually. The
sparsity of each matrix is computed by dividing the
number of non-zero, which is fixed below each figure
(nz~), by the total number of elements of the matrix.

Figure (4) through (9) below show the sparse structure of
the matrices for larger problem, where the range of
influence (the Variogram reaches the sill) having the
value equal to the third of the maximum distance in the
grid system. The figures show that the sparsity becomes
much clear. The non-zero elements related to the total
number of elements especially for the initial matrices are
less than 5%. Although each element needs 8 MB for
storage, there is much saving in the processing time as
well as in storage capacity required for completing the
simulation than that with known traditional method.

Implementation the Algorithm

e Dataset that has been used for testing programs
performance (which cover geographic area of
1000m X 1000m) is given in the form of 3-column
matrix (X, y, z) . It is a terrain elevation data consist
of 266 points distributed as shown in (Fig.1).

e Data in the study has been downloaded from internet
which was related to a small forested area in
Wisconsin, USA, provided by Department of Forest
Resources, University of Minnesota.

The Conditional simulation by Incomplete Cholesky
decomposition using sparse matrix technique has
been implemented using the special Matlab Program.
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Fig.1 Dataset Locations and their distribution

The data is an ascii file, where Matlab reads it in two
ways: either by giving the name of the ‘file’ or matrix
which must consist of three columns: the first two
columns contain the geographic X,y coordinates and the
third contains the corresponding z values. The other way
of entering data into the program is to give the names of 3
vectors, representing the geographic coordinates and data
values, separately. The program computes the mean value
and the variance in order to convert the data into a
standard Gaussian (Davis 1987b). The second step is to
define the grid system that has to be simulated. The
parameters for the simulated nodes are entered in two way
either interactively or written directly in the program.
Variogram parameters, Anisotropy, nugget effect, number
of simulations as well as seed number all can be entered
in the same ways mentioned above. The program structure
is similar to the program ‘lusim’ provided by the GSLIB
[Deutsch C.V. & Journel AG. (1992) ], although here the
study uses sparse matrix technique with the Incomplete
Cholesky Decomposition. All those functions are Matlab
built-in functions, thus they do computational tasks, much
faster than other functions that have no similar Matlab
functions. Those functions use the traditional GSLIB
methodology and their execution is very slow, therefor
they slow the performance of the program. For example,
the construction of covariance matrices uses the
traditional method and takes more than 90% of the overall
execution time. 24 Simulations were generated and some
results of the Cholesky decomposition Process are shown
in figures No 2 through figure No 9 for small scale
problems as well as for large scale Problems. Final 16
Simulation results represented by Contour images are
shown in figures No.10 through figure. No.25.



Conclusions

In this paper, sparse matrices technique with Cholesky
decomposition has been tested and proved as an efficient
method for decomposing large covariance matrix by
Cholesky method and generating simulation realizations.
This method is based on the randomized sampling of
covariance matrix for finding a sparse matrix which has
much smaller size than the original one and captures most
of the action of that matrix. This method works very well
for approximation of DEM’s which generates as many
simulations as needed very fast.

When the field correlation is defined using Gaussian
Covariance Function and taking into account the sparsity
of the system and this means that only pair of nodes that
fall within the zone of influence (the range) have a
significant correlation, the rest of pairs, usually located
beyond the search radius, having negligible correlations
and introducing many zero elements in the covariance
matrix. This study shows that, using this method, very
large covariance matrices can be decomposed, but only
limitation of this method is related to storing a large sparse

matrices in computer memory like matrices L, and L,,.

The study provided computationally efficient methods for
fitting DEM model to a relatively small data set by
generating spatial simulations conditioning on the data
itself. Once the new value simulated, it is added to the
original set of conditioning data, and the procedure
repeated. Once enough simulations are computed, a ‘best’
DEM model is then fit very quickly. The conditional
simulation results give the most likely values or expected
values at unobserved locations. As we see from the figures
below that the simulated data reflect some of the
uncertainties that are expected from any kind of
simulation whether it is conditional or unconditional.
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Figure 4 Sparse Covariance Matrix CI1
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Figure 2 Computational Steps of the of the Variance
Covariance Matrix (small scale dataset)
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Figure 3 Computation Steps - Incomplete Cholesky
Decomposition with Sparse Matrices (Small Scale Problem)

Figures (4) through (9) show: Computational Steps—
Variance-Covariance Matrix and Incomplete Cholesky
Decomposition with Sparse Matrices (for Large Scale
Problem)
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Figure 6 Sparse Lower Triangular Matrix L11
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Some Simulations and Contours representation

Belowl2 figures represent 12 Simulation (Fig. No.10
through Fig.No.21) . Notice that each simulation is different
from the others. In fact we can do unlimited number of
simulations and each of them will be unique.
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Simulation No.8
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